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Abstract
The close theoretical analogy between the physics of rapidly rotating atomic Bose condensates
and the quantum Hall effect (i.e. a two-dimensional electron gas in a strong magnetic field) was
first pointed out ten years ago. As a consequence of this analogy, a large number of strongly
correlated quantum-Hall-type states have been predicted to occur in rotating Bose systems, and
suggestions have been made for how to manipulate and observe their fractional quasiparticle
excitations. Due to a very rapid development in experimental techniques over the past years,
experiments on BEC now appear to be close to reaching the quantum Hall regime. This paper
reviews the theoretical and experimental work done to date in exploring quantum Hall physics
in cold bosonic gases. Future perspectives are discussed briefly, in particular the idea of
exploiting some of these strongly correlated states in the context of topological quantum
computing.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Almost a decade ago, it was realized [1] that there exists an
intimate theoretical connection between two seemingly very
different physical systems: the quantum Hall effect (QHE) [2],
which occurs in a two-dimensional electron gas (2DEG) at very
low temperatures and strong magnetic fields, and a rapidly
rotating, dilute Bose–Einstein condensate [3] of electrically
neutral atoms. The key to this analogy is the observation
that in two dimensions rotation and a perpendicular magnetic
field play a very similar role, making the two systems
mathematically equivalent. This implies that, at sufficiently
fast rotation, a Bose condensate is expected to enter a regime
with strongly correlated states of the quantum Hall type,
including quasiparticle excitations that obey fractional (anyon)
statistics [4].

In recent years, the quantum Hall—rotating BEC analogy
has been theoretically explored in great detail, starting with the
prediction [5] of a bosonic Laughlin state [6]. In addition, a
large number of other incompressible states are, in principle,
expected to occur, including the bosonic analog of the Jain
sequence [7] and other Abelian states, but also non-Abelian
states [8, 9]. Moreover, a number of exotic states have been
predicted in the case of rotating bosons with spin [10].
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Unfortunately, experiments have not yet reached this
quantum Hall regime. However, there is reason to be
optimistic, as the experimental development over the past
decade has been astounding. The first experiments on rotating
atomic Bose condensates were performed in the late 1990s,
and the first observation of a quantized vortex reported in
1999 [11, 12]. Since then, Abrikosov lattices with hundreds of
vortices have been produced, and present-day experiments [13]
are close to the rotation speed at which this vortex lattice
is predicted to melt and the system enter the quantum Hall
regime. The main obstacle is that at these rotation speeds
the system is close to the point where the centrifugal potential
cancels the external harmonic trap and the atomic cloud would
fly apart. There are, however, recent proposals for how to get
around this problem by modifying the confining potential, so
that the quantum Hall regime may be reachable in the near
future.

In addition to being interesting in its own right, the
prospect of producing quantum-Hall-type states in cold atom
systems may have long term practical applications. One of
the reasons for the recently revived interest in the anyonic
excitations of the QHE is the theoretical proposal to use them
in the context of quantum computing [14]. This vision is
certainly very far into the future. On the other hand, atomic
systems may eventually turn out to be superior to the 2DEG
quantum Hall system, as they allow for a very large degree
of controlled tunability of various experimental parameters,
including interaction strength and details of the confining
potential. Moreover, these systems are well isolated and clean
and thus less prone to decoherence than solid state realizations.

This paper presents a (hopefully) comprehensive review
of this, still active, field of research. Section 2 gives a brief
overview of the fractional quantum Hall effect. In section 3
we give a general introduction to the subject of rotating Bose
condensates, summarizing the experimental developments of
the past decade and the theoretical understanding of how the
system goes from a vortex lattice to the quantum Hall regime
as rotation is increased. Section 4 explains the theoretical
equivalence between a fast-rotating Bose gas and electrons
in a strong magnetic field, along with some of the basic
properties of the resulting many-body spectrum in the presence
of interactions. An account of the literature on Abelian bosonic
quantum Hall states is given in section 5; most of this work
is numerical or based on trial wavefunctions such as those
of the composite fermion phenomenology [7] and involves
testing for the occurrence and stability of incompressible
states (and their fractional excitations) at, e.g., the Jain
fractions. This section also contains a brief discussion of
the applicability of the composite fermion scheme for very
low-angular-momentum states. Quite some work has been
done to study the possible occurrence of non-Abelian quantum
Hall states, which are particularly interesting in the context
of topological quantum computing. This is accounted for in
section 6, which concludes that such states appear to be more
prominent in rotating BEC than in the conventional QHE.
Following this, we summarize various recent proposals for how
to design experiments capable of reaching the quantum Hall
regime with present-day experimental techniques (section 7).
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Figure 1. Sketch of the Hall experiment. The 2DEG is exposed to a
strong perpendicular magnetic field Bz. A current Ix is passed
through the sample along the x-direction, and the resulting transverse
voltage Vy measured for varying values of the magnetic field.

Finally, we briefly discuss multicomponent Bose condensates
(section 8) and round off with some concluding remarks and
future perspectives in section 9.

2. The fractional quantum Hall effect—a brief
overview

The fractional quantum Hall effect (FQHE) [2] is one of the
most intriguing and most studied phenomena in condensed
matter physics during the past two to three decades. It
occurs in two-dimensional, high-mobility electron systems
(typically formed at the interface between two semiconductor
crystals, e.g. in GaAs heterostructures) subjected to a strong
magnetic field and low temperatures (in the millikelvin regime
in present-day experiments). Figure 1 shows a sketch of
a typical Hall experiment: a current Ix is passed through
the sample along the x-direction and the resulting transverse
voltage Vy measured for varying values of the magnetic field.
Roughly speaking, the occurrence of a transverse voltage can
be understood as being due to the deflection of the charge
carriers in the presence of the external magnetic field, causing
a build-up, or imbalance, of charge along the edges of the
sample. In a purely classical picture, this leads to a linear
relation for the Hall resistance Rxy = Vy/Ix as a function of
the magnetic field B . In the quantum Hall effect, however, the
Hall resistance is quantized,

Rxy = Vy

Ix
= 1

ν

h

e2
, (1)

where h is Planck’s constant and e the electron charge. The
number ν takes integer values (integer quantum Hall effect) or
is equal to rational fractions (fractional quantum Hall effect),
and each allowed value of Rxy remains constant for a finite
range of the magnetic field, as indicated in figure 2. At the
same time, the longitudinal resistivity ρxx is equal to zero,
except for the transition regions between neighboring plateaux.
A third characteristic property of each of these quantum Hall
states is that the system is incompressible, i.e. there is a gap
between the ground state and (bulk) excitations. The integer
effect was discovered in 1980 by von Klitzing et al [15]; two
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Figure 2. Sketch of the (integer) quantum Hall effect. The Hall
resistance as function of the magnetic field is quantized, i.e. exhibits
plateaux. (The result predicted by the classical Hall effect
corresponds to a straight line through the centers of the plateaux.)
The longitudinal resistivity is zero except at transitions between
plateaux. Courtesy of DR Leadley, Warwick University 1997.

years later, using even cleaner samples, Tsui and collaborators
reported the discovery of the fractional effect [16] at ν =
1/3. Since then, with the fabrication of ever-higher mobility
samples, a large number of fractions have been observed1. The
quantization of the Hall resistance turned out to be extremely
exact (to at least ten parts in a billion), which has led to the
introduction of a new standard of resistance, with the so-called
von Klitzing constant RK = h/e2, roughly equal to 25 812.8�,
as the fundamental unit.

Physically, the number ν in (1) corresponds to the Landau
level filling fraction at the center of the corresponding plateau2.
In other words, the IQHE occurs when an integer number of
Landau levels is filled, while the FQHE is seen at fractional
filling. As a consequence of this, the integer effect may be
qualitatively understood in terms of a non-interacting electron
picture [2]. The fractional effect, on the other hand, is a much
more subtle phenomenon, taking place (mostly) in the lowest
Landau level (LLL) and possible to understand only when
the interactions among the electrons are taken into account.
The theoretical explanation of the most prominent fractional
states at ν = 1/m, where m is an odd integer, was given by
Laughlin in 1983, when he proposed his famous many-body
wavefunction for the ground state [6],

ψ(z1, z2, . . . , zN ) =
∏

i< j

(zi − z j)
me−∑

i |zi |2/4. (2)

Here, zi ≡ xi + iyi
√

eB/h̄c are two-dimensional complex
coordinates denoting the positions of the particles in the

1 While high mobility is necessary in order for the FQHE to be observed,
the effect would actually go away if there were no impurities in the system at
all. The occurrence of FQH plateaux requires a small but essential amount of
disorder.
2 Landau levels are the quantized energy levels of charged particles in a
magnetic field. The degeneracy Ns of each Landau level is equal to the number
of flux quanta penetrating the system, and ν is the filling fraction Ne/Ns , where
Ne is the number of electrons in the system. Some more details on Landau
levels will be discussed in section 4.

plane. It makes intuitive sense that this wavefunction does a
good job in minimizing the Coulomb energy of the strongly
correlated electrons in the plane—it contains the mth power of
a Jastrow factor, which is a product of the ‘distances’ (relative
coordinates) between all pairs of particles. The Jastrow factor
approaches zero when any two particles try to come close to
one another and thus, in a sense, helps to keep the particles
apart3. This is a useful picture to keep in mind, as this factor
will show up in various contexts later in the article.

The Laughlin wavefunction describes a novel, inherently
quantum mechanical state of matter, an incompressible
quantum fluid. One of the most exotic properties of this state,
and all other fractional quantum Hall states, is that it supports
fractional excitations; Laughlin showed that its fundamental,
charged quasiparticle excitations carry a fraction (1/m) of the
electron charge and obey fractional (anyon) statistics [4]. The
latter means that they are neither bosons nor fermions; when
two such quasiparticles are exchanged in a counterclockwise
manner, their wavefunction picks up a phase

ψ(r2, r1) = eiπαψ(r1, r2) (3)

with α = 1/m for the ν = 1/m state. (Bosons and
fermions would correspond to α = 0 and 1, respectively.)
Laughlin’s theoretical explanation of the FQHE earned him the
1998 Nobel prize in physics, together with the experimental
discoverers Tsui and Störmer.

As mentioned previously, a large number of FQH states
have been observed since the discovery of the ν = 1/3
plateau. Most of these occur at odd-denominator fractions,
and many (but not all) belong to the ‘Jain sequences’ ν =
n/(2np ± 1) with n and p integers. There have been two
main theoretical approaches to these states. In the Haldane–
Halperin hierarchy picture [17, 18], a QH state can give rise
to a sequence of ‘daughter states’ as successive condensates
of quasielectrons and/or quasiholes. The basic idea is that,
once the system is in a Laughlin state and a sufficiently large
number of quasielectrons or quasiholes have been generated
(typically by changing the magnetic field away from its value
at the center of the quantum Hall plateau), these quasiparticles
themselves may form a strongly correlated state, in much the
same way as the electrons form the Laughlin state. The result
is a new incompressible QH ground state at a different filling
fraction, whose quasiparticles may again condense to form the
next ‘daughter’ etc. The other approach is based on Jain’s
phenomenology of composite fermions [7]. The main idea
of this construction is, roughly speaking, to attach an even
number of vortices to each electron. These vortices effectively
cancel a part of the external magnetic field, thus mapping the
electrons into weakly interacting composite fermions, which
can then be thought of as moving in a reduced magnetic field.
This picture provides a method to construct explicit trial many-
body wavefunctions for the ground states at ν = n/(2np ± 1),
as well as their quasiparticle excitations. This approach has
proven highly successful, producing wavefunctions with very

3 Note that a single power of the Jastrow factor would be sufficient to fulfill
the requirement that any fermionic many-body wavefunction has to go to zero
as any two particles approach each other. So the Laughlin wavefunction goes
to zero faster than what is simply required by the Pauli principle.
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high overlaps with the corresponding exact states; we will get
back to the details in section 5.1. Recent work [19], based
on the use of conformal field theory methods to construct
hierarchical FQHE wavefunctions, illustrates that these two
seemingly competing approaches are, in fact, very closely
related [20, 21].

While almost all polarized FQH states observed to date
occur at odd-denominator fractions, there is one known
exception, namely, the gapped state at ν = 5/2. It is believed to
be described by the so-called Pfaffian wavefunction proposed
by Moore and Read [8]. The Pfaffian is the exact ground
state of a three-body repulsive interaction and describes a
paired state very similar to a p-wave superconductor [22];
it is even more exotic than the states discussed above, in
that its quasiparticle excitations obey non-Abelian fractional
statistics [14]. This generalization of ’conventional’ (Abelian)
anyons requires a degenerate set of d states with quasiparticles
at fixed positions r1, r2, . . . , rn , such that an interchange of
two quasiparticles i and j corresponds to a unitary operation
in the subspace of these degenerate states,

ψα → ρ
(i j)
αβ ψβ. (4)

Here, ρ(i j) is a d × d unitary matrix, and the set {ψα}
denotes an orthonormal basis of the degenerate states. If
the unitary matrices corresponding to different quasiparticle
interchanges do not commute, the particles are said to obey
non-Abelian statistics. The recent theoretical proposal that
it might be possible to use such non-Abelian anyons in the
context of topological quantum computing [14] has spurred
great interest in the physics of the ν = 5/2 state. Moreover,
there exist mathematical generalizations of the Pfaffian, the so-
called Rezayi–Read (RR) or parafermion states [9]; although
there are speculations that the recently observed QH plateau
at ν = 12/5 [23] might correspond to a k = 3 parafermion
state, there is so far no unambiguous evidence of the existence
of such, even more exotic, non-Abelian states in the quantum
Hall system.

Direct analogies of all the above (and many more) features
of the FQHE are, in principle, expected to occur in rapidly
rotating Bose gases and have been extensively studied in the
literature in recent years. After a general introduction to
rotating Bose condensates in the next section, the remainder
of this article will be devoted to discussing these analogies in
more detail.

3. Rotating Bose condensates

Bose–Einstein condensation of magnetically trapped alkali
atoms was first achieved in 1995 [24], opening up many
new directions of research on the border between atomic
and condensed matter physics. Soon after these seminal
experiments, people became interested in the rotational
properties of atomic Bose condensates, and the occurrence of
quantized vortices [25] was predicted [26]. The subsequent
experimental development has been astonishing. The first ever
vortex in such an atomic cloud was reported by the JILA group
in 1999 [11], and soon after by the Paris group [12]. In the

Figure 3. Image of an Abrikosov vortex lattice in a rotating BEC.
From the JILA web page; courtesy of Eric Cornell.

former, the vortex state was obtained by a direct imprinting
of the 2π phase shift onto the condensate, while the latter
experiment used a mechanical stirring technique, with laser
beams acting basically like a spoon in a cup of coffee [27].
Following these experiments, the same stirring technique was
used to create ever larger numbers of vortices [28–30], which
could be seen to organize themselves in triangular (Abrikosov)
vortex lattices. A well established technique to visualize, e.g.,
such vortex arrays is to perform absorption imaging along the
rotation axis—a picture is taken after switching off the trap and
allowing the cloud to expand for a fraction of a second. The
vortices then appear as density dips in the image, as shown
in figure 3. There is a third method which can be applied
to further increase the angular momentum once the cloud is
rotating; it is based on ‘evaporative spin-up’, i.e. evaporating
atoms with angular momentum smaller than average [31, 32].
Using this technique, it has been possible to create arrays with
up to 200 vortices [33], and to study detailed properties such
as the vortex modes [13, 34] and vortex cores [13, 33].

An interesting question to ask, then, is what will
eventually happen to the vortex array if one keeps increasing
the angular momentum of the system and thus the density of
vortices. One might expect that at some point the vortex cores
would start to overlap, as is the case in type II superconductors
about to become normal. However, the picture that has
emerged is quite different [35]. Since the confining potential
in typical BEC experiments is harmonic, there is a limit where
the centrifugal potential cancels the external potential and the
cloud will become deconfined and fly apart (see section 4 for
a more detailed discussion). When approaching this limit from
below, the particles spread out, making the cloud more and
more pancake shaped, and the effective interparticle interaction
becomes weaker due to the decrease in density. As we shall see
in the next section, these are preconditions for the BEC to be
equivalent to a system of particles in the lowest Landau level.
The entrance into the LLL regime is signaled by a shrinking of
the vortex cores starting around the rotation frequency at which
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the size of a vortex core becomes comparable to the spacing
between vortices—the ratio between the size of a vortex core
and the area occupied per vortex saturates to a constant. This
behavior was predicted by Baym and Pethick [35, 36] and
confirmed in recent experiments [13], where the transition to
the LLL regime was observed to occur at around 98% of the
deconfinement limit. Eventually, at even higher rotation, the
vortex lattice is expected to melt. This melting transition has
been studied theoretically by several groups [37–39] and is
predicted to occur around ν ∼ 6–10, where the filling factor
ν is the ratio of boson density to vortex density. Beyond this
point, the system enters a regime of homogeneous, strongly
correlated states of the same nature as those in the fractional
quantum Hall effect.

So far, experiments have not actually reached this quantum
Hall regime. Rotation frequencies of more than 99% of the
deconfinement limit have been achieved [13], which is believed
to be close to the vortex melting transition. The main practical
problem is to push the rotation further without passing the
point where the cloud flies apart. There are several very
recent proposals of ways to avoid this problem, basically by
modifying the external confinement. With these modifications,
it may well be possible to reach the quantum Hall regime with
presently available experimental techniques. We shall discuss
these novel ideas in some more detail in section 7. Meanwhile,
the next three sections summarize the theoretical analogies
between rapidly rotating Bose condensates and the quantum
Hall effect, simply assuming that the system is in the lowest-
Landau-level regime.

4. Rotating bosons as a lowest-Landau-level problem

The basic insight, providing the analogy between rotating
Bose condensates and the quantum Hall system, is that the
Hamiltonian of a rotating system of harmonically confined,
neutral particles is essentially equivalent to that of charged
particles in an external magnetic field. We start by making
this statement more precise and discussing under what
circumstances a rotating Bose gas can be mapped to a lowest-
Landau-level problem. The second part of this section presents
some of the general properties of the corresponding many-body
energy spectrum.

4.1. Mapping to the LLL

Let us consider a system of N spinless bosons with mass m in
a harmonic trap of strength ω, rotating with angular frequency
� and interacting via a short-range (delta function) potential
HI . In a rotating frame the Hamiltonian can be written as

H =
N∑

i=1

[ �p2
i

2m
+ 1

2
mω2�r 2

i

]
−�Lz + HI (5)

where Lz denotes the angular momentum around the rotation
axis. (For simplicity, we will set h̄ = 1 whenever there is
no risk of confusion.) Separating out the planar (x, y) part
and completing the square inside the brackets, one can rewrite

equation (5) as

H =
N∑

i=1

[
1

2m

(
�pi − �A

)2

‖
+ Hho(zi)

]
+(ω−�)Lz + HI (6)

with �A = mω(−y, x), ‖ denoting the planar (x, y) part of the
Hamiltonian, while Hho(z) denotes the perpendicular (z) part
of the harmonic oscillator potential. This is how the formal
link to the quantum Hall system comes about: we see that
the planar part of H takes the form of particles moving in an
effective ‘magnetic’ field �Beff = ∇× �A = 2mωẑ. The quantum
mechanical one-body spectrum of this part of the Hamiltonian
is given by the so-called Landau levels (see, e.g., [2]), with
energy En‖ = (n + 1

2 )h̄ωc, where n = 0, 1, 2, . . . , and ωc =
2ω. Each Landau level is degenerate in angular momentum, the
number of states per Landau level being equal to the number of
(effective) flux quanta piercing the plane. The single-particle
wavefunctions in the symmetric gauge chosen here can be
expressed as

ηn,m = Nn,m e−|z|2/4 zm Lm
n

(
zz̄

2

)
, (7)

where n is the Landau level index, m denotes the angular
momentum, Nn,m is a normalization factor, Lm

n are the
associated Laguerre polynomials, and z = √

2mω(x + iy)
is again a (dimensionless) complex coordinate denoting the
particle position in the plane (note the change in notation
as compared to (6)). Now, the interaction is assumed to be
weak in the sense that it does not mix different harmonic
oscillator levels. We will be interested, for a given total angular
momentum, only in the lowest-lying many-body states (the
‘yrast’ band). In this limit, the model may be rewritten as a
lowest-Landau-level (LLL) problem in the effective ‘magnetic’
field Beff = 2mω (and nz = 0 for the harmonic oscillator in
the z-direction). The Hamiltonian then reduces to the form

H = (ω −�)L + g
∑

i< j

δ2(ri − r j ) (8)

where L denotes the total angular momentum, L = ∑
i li =

Lz . The single-particle states spanning our Hilbert space (the
lowest Landau level) are thus (omitting normalization factors)

η0,m = zme−z̄z/4. (9)

A general bosonic many-body wavefunction ψ(z1, . . . , zN )

with good angular momentum can thus be expressed as a
homogeneous, symmetric polynomial in the coordinates {zi},
times the exponential factor exp(− ∑

i |zi |2/4) (which will be
suppressed throughout most of this paper for simplicity); the
degree of the polynomial gives the total angular momentum of
the state.

In the theoretical approach employed in the following
sections, the system is simply assumed to be sufficiently dilute
(i.e. weakly interacting) to be in the lowest Landau level at
all angular momenta; the general strategy will be to look
for the lowest (interaction) energy state within this subspace
for given L and any fixed �. The experimental situation
is somewhat different—we saw in section 3 that in order to
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-2 -1 0 1 2 3 4 5 6 7 8 9

E

Angular momentum L

Figure 4. Sketch of the single-particle Landau level spectrum. The
slope of each level is equal to ω −�.

become sufficiently spread out to be in this dilute regime the
cloud, in present-day experiments, has to rotate faster than� ≈
0.98ω. Moreover, a more natural picture in an experimental
setting is to think of � as fixed, while the system selects the
ground state angular momentum such as to minimize EI +(ω−
�)L. Then, in order to avoid Landau level mixing, the number
of particles and/or (ω −�) have to be small (see figure 4).

4.2. Yrast spectra

A convenient way of studying the many-body properties of a
rotating boson system is to display its yrast spectrum4, where
the lowest many-body energy eigenvalues are plotted as a
function of total angular momentum. An example is shown in
figure 5, which was obtained by an exact diagonalization of the
Hamiltonian (5) of the previous section for four particles, with
the lowest-Landau-level restriction imposed. In the absence of
interactions, the system is highly degenerate—the degeneracy
for a given total angular momentum L corresponding to the
number of ways L quanta of angular momentum may be
distributed among N bosons. This degeneracy is lifted by the
short-range repulsion, leading to the energy band seen in the
figure (the spectrum is shown for � = ω, i.e. shows purely the
interaction energy, cfr. equation (8)). The line connecting the
lowest states at different angular momenta is commonly called
the yrast line. A number of basic properties of the system
may be read off this spectrum. First of all, one notices that
the lowest possible energy decreases with increasing angular
momentum, starting from L = 0, where all bosons sit in the
lowest-angular-momentum state; this is due to the particles’
ability to spread out more in the plane, as more and more
angular momentum states become available to them (or, in
other words, because the particles interact only for zero relative
angular momentum). In particular, one notices that at L =
N(N −1) = 12 and above the ground state has zero interaction
energy. This is the first immediate consequence of the analogy

4 ‘Yrast’ is a term traditionally used in nuclear physics when studying
rotational spectra of nuclei. It is a Swedish word meaning ‘most dizzy’,
i.e. the highest possible angular momentum at a given energy. In the context
of rotating Bose condensates, the term ‘yrast spectrum’ was first introduced by
Ben Mottelson [40]. Similar spectra have been used extensively in the quantum
Hall literature.

1
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Yrast Line
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6

E
 (
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 -

 h
w
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Figure 5. Yrast spectrum, i.e. many-body interaction energy as
function of total angular momentum, for four bosons in a harmonic
trap with delta function repulsion. This figure was first published
in [41].

to quantum Hall physics: just as in the quantum Hall effect, it
is possible to construct particularly well correlated states of the
Jastrow form, i.e.

ψ({zi }) =
∏

i< j

(
zi − z j

)2m
f (z) (10)

where m is a positive integer, and f ({zi }) is some
homogeneous, symmetric polynomial in the N coordinates
{zi}. Since the repulsive interaction between the bosons is
zero range, any state of this form will have zero interaction
energy. Since the total power of a Jastrow factor

∏
i< j (zi − z j)

is equal to the number of pairs of particles, N(N − 1)/2, the
Jastrow part of the wavefunction (10) contributes an angular
momentum L0 = m N(N − 1). Therefore, the smallest
angular momentum at which a state of the type (10) can exist
is N(N − 1). At this angular momentum, the exact, non-
degenerate ground state of the system is given by the Bose–
Laughlin state

ψ({zi }) =
∏

i< j

(
zi − z j

)2
(11)

as was first pointed out in [5]. The degeneracy of the zero-
energy yrast states at L > L0 corresponds to the number of
ways L − L0 angular momentum quanta can be distributed
among the N particles; alternatively, this degeneracy can be
found [41] by exploiting the fact that the wavefunctions (10)
describe anyons in the lowest Landau level [42] obeying
Haldane’s exclusion statistics [43] with statistics parameter
g = 2.

Another important feature of the yrast spectrum is that
for each state there is a set of ‘daughter states’ at all higher
L, with the same (interaction) energy. These are simply
center-of-mass excitations of their ‘parent’ state [44]. At a
given L, all states corresponding to center-of-mass excitations
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of lower-L eigenstates are orthogonal to the subspace of
‘new’ states. According to Trugman and Kivelson [44],
the latter subspace consists of translation invariant (TI)
polynomials, i.e. polynomials which are invariant under a
simultaneous, constant shift of all coordinates, zi → zi + a.
A convenient basis for the TI subspace is the elementary
symmetric polynomials of degree L, sL({z̃i}) (2 � L � N),
defined as

sL(z̃1, . . . , z̃N ) = S {z̃1 z̃2 . . . z̃L} (12)

with z̃ ≡ z− Z , where Z = ∑
i zi/N is the center of mass, and

S denotes symmetrization of the product over all N particle
coordinates. Together with s1({zi}) = z1+z2+· · ·+zN = N Z ,
the elementary polynomials (12) thus span the entire space of
symmetric, homogeneous polynomials in the lowest Landau
level. We will make explicit use of the basis (12) when
discussing low-angular-momentum states in section 5.4.

The yrast spectra of rotating Bose condensates in the
weak-interaction (lowest Landau level) regime have been
studied extensively in the literature, using a variety of methods
including analytical studies [40], mean field (Gross–Pitaevskii)
theory [45], and exact numerical diagonalization [46–48]. For
example, Reimann et al [47] demonstrated how the presence
of localized vortices in a rotating boson cloud is revealed
by periodic cusps in the yrast line of the exact many-body
spectrum. However, the dominating line of attack in studying
the analogies to quantum Hall physics has been the use of
various types of trial wavefunctions. These include bosonic
versions of Laughlin- and Jain-type wavefunctions [6, 7] and
variations thereof [48, 49], as well as the bosonic counterparts
of non-Abelian quantum Hall wavefunctions [8, 9]. The results
of these trial wavefunction studies are reviewed in more detail
in the following sections.

5. Abelian quantum Hall states

Most known fractional quantum Hall states are Abelian. These
include the Laughlin and Jain states and more generally
all states which, in the hierarchy picture, are generated by
any sequence of quasielectron and quasihole condensates, as
was discussed in section 2. The bosonic counterparts of
the Laughlin and Jain states have been extensively studied
in the literature, mainly numerically. Apart from exact
diagonalization, a particularly widely used technique is the
composite fermion approach; this line of work is reviewed in
the first and main part of this section. In addition, we briefly
discuss the anyonic quasiparticles of these states, the bosonic
hierarchy, and the possibility to apply the composite fermion
formalism at very low angular momenta.

5.1. The Jain sequence and composite fermions

We argued in the previous section that translation invariant (TI)
states play a special role in the rotation spectra. A particularly
useful scheme of constructing TI trial wavefunctions that has
been widely exploited in quantum Hall physics comes from

the phenomenology of composite fermions (CF)5. Composite
fermions were first introduced by Jain [7] and have proven
very successful in describing FQH states, quantum dots in high
magnetic fields [50], and, as we shall now discuss, highly
rotational states of Bose condensates [5, 41, 51, 52]. In
quantum Hall physics, the basic picture of Jain’s construction
is, roughly speaking, that an even number of vortices is bound
to each electron. Each of these vortices effectively cancels one
flux quantum of the external magnetic field, and the electrons
are thus mapped into weakly interacting composite fermions,
which can be thought of as moving in a reduced magnetic
field. Technically, ‘attaching a vortex’ means multiplying the
wavefunction by a Jastrow factor,

∏

i< j

(zi − z j ). (13)

We have already mentioned that the Jastrow factor has the
effect of keeping the particles apart—it goes to zero if any two
coordinates zi and z j approach each other. Therefore, it takes
care of much of the repulsive interaction between the particles.
In the simplest approximation, the so-called non-interacting
composite fermion (NICF) approach, the composite fermions
are thus simply assumed to be non-interacting. This kind of
considerations led Jain to construct trial wavefunctions a Slater
determinant of (non-interacting) composite fermions in the
reduced magnetic field, times an even power of Jastrow factors.
In the case of bosons, whose wavefunction has to be symmetric
rather than antisymmetric, the construction is modified by
instead binding an odd number of vortices, mapping the bosons
to weakly interacting composite fermions. In other words,
bosonic trial wavefunctions with angular momentum L are
constructed as non-interacting fermionic wavefunctions with
angular momentum L − pN(N − 1)/2, multiplied by an odd
number p of Jastrow factors, and projected onto the LLL,

ψL = P
(

fS(zi , z̄i )
∏

i< j

(zi − z j)
p

)
. (14)

Here, fS denotes a Slater determinant consisting of single
particle wavefunctions (7). The LLL projection P amounts
to the replacement z̄i → 2∂/∂zi in the polynomial part
of the wavefunction—the recipe is to replace all the z̄ with
derivatives in the final polynomial, after multiplying out the
Slater determinant and the Jastrow factors and moving all the
z̄ to the left. It has been shown [7] that with this projection
method the single particle wavefunctions in the CF Slater
determinant may be written as

ηnl = zn+l∂n, l � −n (15)

with all derivatives acting only to the right. As this
method tends to become computationally heavy in numerical
calculations with many particles and a large number of
derivatives, somewhat different methods of obtaining LLL

5 There is a class of wavefunctions within the CF formalism that are, by
construction, translation invariant: they are called compact states and are
characterized by having the nth CF Landau level occupied from ln = −n
to ln = lmax

n without any ‘holes’.
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wavefunctions have been employed in most of the CF
literature [7]. These, too, are often referred to as projection.
Nevertheless, in this paper, ‘projection’ will refer to the above
‘brute force’ procedure.

Before summarizing the results obtained in the literature,
let us illustrate the method on two simple and well known
examples in the QH regime: first, consider the case L =
N(N − 1). Taking p = 1, the Slater determinant fS has to
contribute an angular momentum N(N − 1)/2 and is given by
putting all CFs into the lowest CF Landau level, from l = 0 to
N − 1,

fS =

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
z1 z2 . . . zN

z2
1 z2

2 . . . z2
N

. . . . . . . . . . . .

zN−1
1 zN−1

2 . . . zN−1
N

∣∣∣∣∣∣∣∣∣∣

≡
∏

i< j

(zi − z j ). (16)

We immediately see from equation (14) that the full wavefunc-
tion is simply the bosonic Laughlin wavefunction (11) with
angular momentum L = N(N − 1). Next, consider the an-
gular momentum N(N − 1) − N , corresponding to a ‘quasi-
atom’ (the bosonic counterpart of a quasielectron) at the center.
While a quasihole can be seen as a local depletion of the quan-
tum Hall liquid, a ‘quasiatom’ corresponds to a local contrac-
tion, with fractional surplus charge (or rather particle number
in our case of neutral bosons) 1/2. In the CF language, a trial
wavefunction for such a quasiparticle excitation at the center,
i.e. with minimum angular momentum, is obtained by exciting
one composite fermion to the second CF Landau level, leading
to the Slater determinant

fS =

∣∣∣∣∣∣∣∣∣∣∣∣

z̄1 z̄2 . . . z̄N

1 1 . . . 1
z1 z2 . . . zN

z2
1 z2

2 . . . z2
N

. . . . . . . . . . . .

zN−2
1 zN−2

2 . . . zN−2
N

∣∣∣∣∣∣∣∣∣∣∣∣

. (17)

We see that it is the excited composite fermion, with single
particle wavefunction ∼z̄ (to be replaced by a derivative
upon LLL projection), that causes the reduction of angular
momentum as compared to the Laughlin state. One obtains
the full trial wavefunction (again, apart from the exponential
factor)

ψqp =
N∑

i=1

(−1)i∂i

∏

k<l;k,l 
=i

(zk − zl)

N∏

m<n

(zm − zn)

∝
N∑

i=1

∑

j 
=i

1

zi − z j

∏

k 
=i

(zi − zk)
−1 ψL (18)

with ψL denoting the Laughlin state (11). This wavefunction
has very high overlap with the exact one (e.g. 99.7% for four
bosons [41]). Its fermionic counterpart has been proven to
capture correctly both the fractional charge and the anyonic
statistics of the QH quasielectron [53, 54], and the same can be
expected to be the case for this bosonic version.

Trial wavefunctions for other yrast states are constructed
in similar ways. The lower the angular momentum, the larger

the number of derivatives. Had we filled up the second CF
Landau level, with equally many composite fermions as the
first, we would have obtained a trial wavefunction for a new
incompressible ground state, with filling fraction 2/3. In
general, ground states of the principal Jain sequence ν =
n/(n+1)—the bosonic counterpart of the well known principal
Jain sequence ν = n/(2n + 1) in the FQHE—are described
as ν∗ = n integer quantum Hall states of p = 1 composite
fermions, while quasihole and ‘quasiatom’ excitations are
described by removing a CF from a filled CF Landau level
and adding a CF to an otherwise empty CF Landau level,
respectively. Of course this construction can be generalized
in the usual way by attaching a larger (odd) number p =
3, 5, . . . of vortices to each boson. Note, however, that for
a pure delta function interaction the ground states at the
corresponding filling fractions ν = n/(np + 1) belong to the
highly degenerate subspace of zero-energy states discussed in
section 4.2, making this construction less relevant. Adding
higher derivatives of the delta function to the Hamiltonian (or,
equivalently, using Haldane’s pseudopotentials [2]) lifts this
degeneracy, and the CF construction with p > 1 again provides
good wavefunctions for the resulting ground states [41].

The idea of applying the CF phenomenology in the context
of rotating Bose gases was first tested by Cooper and Wilkin [5]
and by Viefers et al [41] in disk geometry [2] for small numbers
of particles, by comparing to exact diagonalization results.
It was shown that the approach reproduces many prominent
features of the yrast spectrum, such as the locations of cusps in
the yrast line; overlaps with the exact solutions for a number
of yrast states were computed for up to ten particles and shown
to be large—typically 99% for five particles. Later, several
more systematic studies were performed [51, 52] in spherical
geometry [17]. The advantage of this theoretical approach,
in which the particles move on the surface of a sphere with
a radial magnetic field produced by a magnetic monopole at
the center, is that the sphere has no boundaries. While edge
effects play an important role for small systems in the plane,
this geometry thus allows for the ‘simulation’ of homogeneous
bulk states even for the relatively modest particle numbers
accessible to numerical calculations. Instead of the complex
coordinates zi discussed so far, the particle positions on the
sphere are parametrized by the polar angles (θi , φi ), or more
conveniently by the spinor coordinates

ui = cos(θi/2)e
iφi/2, vi = sin(θi/2)e

−iφi/2. (19)

For example, the Bose–Laughlin wavefunction (11) takes the
form

ψ =
∏

i< j

(
uiv j − u jvi

)2
, (20)

and other wavefunctions may be translated from the plane to
the sphere in a similar way. Performing exact diagonalizations
for up to 12 particles on the sphere, Regnault and Jolicoeur [51]
found evidence of the occurrence of incompressible (gapped)
states at the principal Jain fractions ν = 1

2 ,
2
3 ,

3
4 ,

4
5 , as

well as excited states in general agreement with the CF
phenomenology. Moreover, going away from pure delta
function interaction by adding a higher-order pseudopotential
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(as discussed above), they found evidence of an incompressible
state at ν = 2/5. This state is not part of the principal Jain
sequence; rather, it is the bosonic counterpart of the 2/7-state
in the FQHE. Provided it is Abelian, it can be understood,
in the hierarchy picture, as resulting from a condensate of
quasiholes in the ν = 1/2 Bose–Laughlin state; in the CF
picture, it belongs to the negative p = 3 Jain sequence,
ν = n/(3n − 1), with n = 2. Although the interaction
in typical experiments is dominated by s-wave scattering,
there exist methods to introduce and enhance an additional d-
wave interaction [55–57]. This may provide a possibility, at
least in principle, to observe the 2/5 state (and other states
with ν < 1/2). Alternatively, one might use a system
of atoms with permanent dipolar interaction [58] such as
chromium [59]. Following up on the work of Regnault and
Jolicoeur, Chang et al [52] performed a direct comparison
between exact diagonalization results and those predicted from
the CF approach, computing energies as well as overlaps
between exact and CF wavefunctions for the ground states and
low-lying excitations at ν = 1

2 ,
2
3 and 3

4 . They found that the
non-interacting composite fermion approach correctly predicts
the incompressibility of the ground states at ν = 1

2 ,
2
3 and

3
4 and produces excellent overlaps (over 97% for up to 10
particles) for the ground state and excitations at ν = 1

2 as
well as the ground state at ν = 2

3 . However, for increasing n,
the NICF approximation gets progressively worse, for short-
range as well as Coulomb interaction, producing considerably
poorer overlaps than in the principal Jain sequence of the
electronic FQHE. In the CF language, the interpretation is
that ‘residual interactions’ between the composite fermions
play an important role. In particular, in the limit n → ∞,
i.e. ν = 1 (the bosonic counterpart of the metallic ν = 1

2 state
in the quantum Hall system), the ground state of the system
can not be described by a Fermi sea but rather appears to be
a non-Abelian state, the bosonic version of the Moore–Read
Pfaffian [8]. We shall get back to this point in section 6.

Additional evidence for the strongly correlated nature of
the states at ν = 1/2, 2/3 and 3/4 was given by Cazalilla
et al [60], who studied the low-energy edge excitations of
harmonically confined, rapidly rotating few-boson systems.
According to Wen [61], the ‘topological order’ of a bulk
quantum Hall state, implying its filling fraction, as well as the
charge and statistics of its quasiparticle excitations, is reflected
in the properties of its edge excitations. Performing exact
diagonalization studies for up to seven particles, Cazalilla et al
showed that the number of edge modes is consistent with that
predicted by Wen’s theory, for the states at ν = 1/2, 2/3 and
3/4.

5.2. Anyonic excitations

A particularly interesting aspect of the fractional quantum Hall
effect is the existence of fractionally charged quasielectron-
and quasihole excitations [6], which are expected to obey
fractional (anyonic) statistics [4]. Obviously, the same type
of quasiparticles should occur in the bosonic quantum Hall
system, with ‘charge’ replaced by particle number. In the
simplest case of the ν = 1/2 Laughlin state, the quasihole

would be a vortex with local lack of density corresponding to
half an atom, and would obey semionic statistics, i.e. quantum
statistics ’halfway’ between bosons and fermions. Such a
quasihole, located at z0, is described by the wavefunction [6]

ψqh({zi}) =
∏

i

(zi − z0)
∏

k<l

(zk − zl)
2. (21)

Paredes et al [62] suggested that, in principle, such quasiholes
can be created by piercing the Bose–Laughlin state locally
with lasers. Adiabatically moving such a laser would then
‘drag’ the quasihole along, enabling controlled interchange
of pairs of quasiholes and thus a direct measurement of the
anyonic phase π/2 picked up under exchange. The latter would
be particularly interesting—despite very promising recent
experimental progress [63] in the electronic FQH system, a
direct and unambiguous measurement of fractional statistics is
still lacking.

5.3. Hierarchy

In addition to the Jain states discussed above, the analogy with
the FQHE in principle predicts a large number of (Abelian)
hierarchical states that do not belong to the principal Jain
sequence [17, 18, 64]. An example of such a state in the 2DEG
is the one recently observed at ν = 4/11 [65], whose bosonic
counterpart would be ν = 4/7. Trial wavefunctions for these
hierarchy states, or at least those corresponding to ‘quasiatom’
(as opposed to quasihole) condensates, may be constructed
using conformal field theory techniques [19, 64, 66]; although
this construction is well defined, its validity will eventually
have to be determined by numerical tests of the resulting
wavefunctions. As discussed above, even the principal Jain
states do not describe the bosonic system as accurately as is
the case in the 2DEG, and the same may be the case for the
general hierarchy construction. Moreover, as we have seen,
trial wavefunctions for ground states at ν < 1/2 are of interest
only in systems with scattering in higher partial waves.

5.4. Low angular momenta—a digression

Let us briefly address some interesting analytic results in a case
that is very far away from the quantum Hall regime, namely
the very lowest angular momenta up to the single vortex, 2 �
L � N . Within the lowest-Landau-level approximation, exact
ground state wavefunctions for all angular momentum states
in this interval were derived some years ago [67, 68]. They
are given by the elementary symmetric polynomials sL(z̃i )

where z̃i = zi − Z and Z = ∑
i zi/N is the center-of-mass

coordinate,

ψex
L =

∑

p1<p2<···<pL

(z p1 − Z)(z p2 − Z) · · · (z pL − Z). (22)

For example, ψL=2 = S[(z1 − Z)(z2 − Z)], with S denoting
symmetrization over all particle coordinates; for L = N this
expression reduces to ψL=N = ∏

i(zi − Z). Since in present-
day experiments the lowest-Landau-level approximation is
certainly not valid at these lowest rotational states, the results
discussed in this subsection may be somewhat academic.

9
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However, there is an interesting connection between the
exact wavefunctions (22) and those following from a naive
application of the composite fermion construction. A priori,
one would certainly expect the CF construction to fail in this
regime, at least if the usual qualitative picture of composite
fermions were to be taken literally. According to this picture,
it is the flux attachment (i.e. the factor

∏
(zi − z j)

p) which
makes the composite fermions weakly interacting, justifying
the NICF approach. Note, however, that since the Jastrow
factor itself has an angular momentum of m N(N − 1), the
construction of CF trial wavefunctions at L ∼ N involves
applying O(N2) derivatives [41, 69]. One would expect that
these derivatives acting on the Jastrow factor destroy most of
the good correlations which are at the very heart of the CF
construction. It is therefore intriguing that in this regime a
naive application of the NICF scheme produces wavefunctions
whose overlap with the exact ground states (22) is not only
large, but increases with increasing particle number. In [69]
the single vortex state, L = N , was studied in detail, and
numerical calculations for up to 43 particles showed that
the overlap between the CF trial wavefunction and the exact
analytical result (22) approaches unity for large N , with
the difference decreasing as ∼1/N (see figure 6). Further
analysis [70] showed that this is not an artifact of the L = N
state. Numerical tests up to N = 7 for L = N − 1 and up to
N = 8 for L = N − 2 show the same tendency, i.e. overlaps
increasing with particle number. (For fixed N , on the other
hand, overlaps tend to decrease as L decreases.) In fact, the
CF wavefunctions can be shown to have an analytical structure
strikingly similar to the exact ones. The simplest example is
the CF state at L = N = 4, which can be expressed as

ψCF
L=N=4 =

4∑

k=1

4∏

i=1

(
zi − Z (k)

)
, (23)

with Z (k) denoting the ‘incomplete’ center-of-mass coordinate∑
j 
=k z j/(N − 1). The situation becomes more complicated

for higher N and lower L, with more and more coordinates
‘missing’ in the center of mass (making the task of analytically
proving the numerical results highly non-trivial), but apart
from this, the general structure (22) is reproduced by the CF
construction.

6. Non-Abelian quantum Hall states

Although the zoo of Abelian states discussed in the previous
section is very rich, it does not exhaust all possibilities
of gapped quantum Hall states. The possible existence of
non-Abelian states in the quantum Hall system was already
pointed out in section 2; in this section we shall discuss the
bosonic analogies of these states. Non-Abelian quantum Hall
states have received great attention lately, due to the recent
proposal to use their quasiparticle excitations in the context of
topological quantum computation [14]. The main advantage
of this scheme is its intrinsic fault tolerance—quantum
information stored in states with multiple non-Abelian
quasiparticles is ’topologically protected’, i.e. immune to local
perturbations. To actually perform a quantum computation
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Figure 6. Overlap between the CF trial wavefunction at L = N and
the exact one given in equation (22), as a function of the number of
particles. Note the range of numbers on the y-axis—the overlap is
equal to 99.5% already for 10 particles.

would involve creating a state with a given number of
quasiparticles at certain positions and performing controlled
braiding operations by physically dragging quasiparticles
around one another in a specified manner. One may thus
speculate that, eventually, rotating Bose condensates may
provide better candidates for topological quantum computing
than the conventional QHE: in general, cold atomic systems are
much easier to control and manipulate, with a high tunability
of experimental parameters, and as already mentioned there
exist theoretical proposals [62] of ways to drag quasiparticles
through the condensate. Moreover, non-Abelian states may
actually be more prominent in the bosonic case; numerical
studies indicate that both the Pfaffian and other parafermion
states can be expected to occur already in the lowest Landau
level. So it is obviously of interest to study the possible
occurrence of such states in the bosonic system. The next
two subsections summarize the work that has been done in this
direction.

6.1. The Pfaffian at ν = 1

As was pointed out in section 5.1, ν = 1 is the bosonic
counterpart of the half-filled Landau level in the electronic
FQHE. In the latter, there is no quantum Hall plateau around
ν = 1/2 [2, 71]; rather, the system displays a compressible
state, behaving like a degenerate gas of (almost) free electrons
in zero external magnetic field. This behavior has been
explained [7, 72] in terms of the non-interacting composite
fermion model—at ν = 1/2 there are exactly two external
flux quanta per electron, so after binding two flux quanta each,
the composite fermions are left in zero effective field and form
a Fermi sea. On the other hand, at ν = 5/2, one does find
an incompressible state which is believed to be described by
the Moore–Read wavefunction, the quantum Hall analog of the
paired state in a p-wave superconductor [22]; the picture is that
the presence of the two filled lowest spin-subbands effectively
modifies the interaction between the electrons in the half-filled
topmost Landau level, leading to pairing.

10



J. Phys.: Condens. Matter 20 (2008) 123202 Topical Review

In the bosonic system, the situation is qualitatively
different, in the sense that there appears to be no compressible
state at ν = 1. Rather, there is quite substantial numerical
evidence that the ground state corresponds to the bosonic
version of the Moore–Read state,

ψMR({zi }) =
∏

i< j

(zi − z j) Pf

(
1

zi − z j

)
(24)

where the Pfaffian is defined as

Pf

(
1

zi − z j

)
= A

[
1

(z1 − z2)

1

(z3 − z4)
· · · 1

(zN−1 − zN )

]
,

(25)
with A denoting antisymmetrization over all coordinates. The
possibility of a Pfaffian state at ν = 1 was first suggested
by Wilkin and Gunn [73]; work by the same group [37] later
showed the existence of an incompressible ground state at
ν = 1, and reported large overlaps (more than 96% for six
particles) between this state and the Pfaffian trial wavefunction;
overlap calculations by Chang et al [52] for up to 16 particles
confirm this picture. Further numerical evidence was given
by Regnault and Jolicoeur [51, 74], both for the ground state
(including evidence of pairing from the form of the two-
particle correlation function) and for quasihole excitations
(correct degeneracies and high wavefunction overlaps).

It appears clear that the existence of the Pfaffian state
at ν = 1 is not an artifact of the short-range interaction—
on the contrary, introducing a Coulomb interaction between
the bosons even increases the overlap [52]. (Though the
introduction of a strong d-wave component in the interaction
may destroy the state [51].) In other words, the fact that
the bosons have a stronger tendency of pairing than their
fermionic counterparts appears to be mainly due to their
quantum statistics.

6.2. Parafermion states

An important difference between the system at hand and the
2DEG is that the bosonic system allows for states with ν > 1
that are entirely in the lowest Landau level, due to the absence
of Pauli blocking. It is thus of interest to understand what
happens in the interval up to ν ≈ 6 where the system is
expected to enter the Abrikosov vortex lattice regime [37]. It
was first suggested by Cooper et al [37] that in this interval, at
ν = k/2; k = 3, 4, 5, . . . one may find a sequence of non-
Abelian incompressible states described by the parafermion
wavefunctions introduced by Read and Rezayi [9]. They can
be represented as [75]

ψ(k)({zi}) = S
[

N/k∏

i< j∈A

(zi − z j)
2

N/k∏

k<l∈B

(zk − zl)
2 . . .

]
, (26)

where the system is divided into k groups (A, B, . . .) each
containing N/k particles, and S denotes symmetrization over
all coordinates. The Laughlin state is recovered as the special
case k = 1, while the expression for k = 2 is an equivalent
way of writing the Pfaffian (24). Generalizing the pairing in the
Moore–Read state, these wavefunctions describe states with k-
particle clustering; they are the exact zero-energy eigenstates

of a (k + 1)-particle delta function interaction. Performing
numerical calculations on the torus, Cooper et al found large
overlaps between the Read–Rezayi states (26) and the ground
states at ν = k/2 for 1 � k � 6 and also recovered the correct
ground state degeneracies. Regnault and Jolicoeur [51, 74]
later took these calculations to larger systems (in spherical
geometry) to see if this picture continues to hold as one
approaches the thermodynamic limit. Their results remained
somewhat inconclusive but indicated that for a pure delta
function interaction, overlaps quickly decrease as k and the
number of particles are increased. On the other hand it was
shown by Rezayi et al [76] that the ν = 3/2 parafermion state
is stabilized by introducing a moderate amount of longer-range
interaction; similar conclusions were reached for ν = 2 in a
very recent paper by Cooper and Rezayi [77]. In principle
this may be achieved in a system with dipolar interactions
or a moderate d-wave component. What makes these states
particularly interesting is that k = 3 is the smallest k-
value among the parafermion states for which the non-Abelian
statistics support universal quantum computation [14].

7. Beyond harmonic potentials—ways to avoid the
deconfinement problem?

We have seen that one of the main practical obstacles to
actually reaching the quantum Hall regime experimentally,
is that, for the usual harmonic confinement, rotation speeds
exceedingly close to the deconfinement limit are required. The
present record, with rotation at � > 0.99ω [13], while having
reached the lowest Landau level, still lies clearly within the
Abrikosov lattice regime. An obvious way to be able to rotate
the cloud faster than ω without it flying apart is to modify
the confining potential. This section summarizes a few such
proposals.

7.1. Quartic potentials

Several theoretical studies have addressed the effect of adding
a small quartic term to the trap [35]. Among the predictions for
the vortex array regime are the occurrence of singly quantized
vortex arrays with a hole in the middle or, at very high
rotation, a single, multiply quantized vortex at the center of
the trap. In experiment, such an anharmonic trap has been
created [27, 78] by applying a blue detuned laser propagating
along the axis of the trap. This effectively amounts to adding
a Gaussian potential U(r) ∼ U0 exp(−αr 2) where r is the
(planar) distance from the axis of rotation, and the constants
U0 and α are given by the parameters of the laser. For small
αr 2 this potential is well approximated by quadratic (giving a
small correction to the original harmonic trap) + quartic.

In a very recent numerical study, Morris and Feder [79]
propose that using this type of quartic potential would make it
possible to attain the Bose–Laughlin state (and other quantum
Hall states) with currently accessible rotation rates. They
show that the inclusion of such a potential tends to lower the
critical rotation frequencies at which the quantum Hall states
are expected to occur. Moreover, they predict that fine-tuning
of the Gaussian parameters (depending on particle number and
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interaction strength) is necessary in order to avoid destroying
the Laughlin state, but that the required values of these
parameters are within experimental reach [80]. In particular,
the required experimental parameters should become more
easily accessible if the number of particles in the condensate
is reduced; this may be achieved [81] by adding a 1D optical
lattice along the axis of rotation, splitting the condensate into
an array of independent quasi-2D BECs.

7.2. Optical lattices

A somewhat different, very recent theoretical proposal
involving optical lattices is due to Bhat et al [82]. They
suggest to include a co-rotating optical lattice (in the tight
binding regime) in addition to the harmonic potential, keeping
the system confined even at critical rotation velocity � =
ω. In addition to avoiding deconfinement of the atom cloud,
this model displays intriguing physical properties: mapping
the system to a Bose–Hubbard model, the authors show that
the rotation introduces phase factors in the effective hopping
term, Ĥhop ∼ â†

i â j e−iφi j + h.c., where the phase depends on
the rotation velocity and particle mass as well as the lattice
spacing. The linear response of the system to a potential
gradient (tilt of the lattice) shows quantum-Hall-like features
even for a single particle (and similarly for two particles).
The authors give the following, qualitative explanation of
the analogy to quantum Hall physics. The lattice, with
its tunneling barriers, in some mean field sense mimics the
repulsion experienced by a single particle from the rest of
the 2DEG, with the inaccessible regions (maxima) of the
lattice corresponding to the positions of the other electrons.
Moreover, the phases picked up by a single particle when
moving around the lattice simulate the effect of the correlation
holes (or vortices) at these ‘electron positions’. But clearly
a lattice potential cannot support a liquid state, so the exact
correspondence between this system and the FQHE remains to
be fully clarified by further studies.

Finally, it is worth mentioning that there have been other
theoretical proposals to create a quantum Hall effect for
bosonic atoms, involving non-rotating optical lattices [83],
were the magnetic field is simulated e.g. by means of laser-
induced hopping [84]. A particular advantage of optical lattices
is the extremely large degree of controllability, not only of the
amount of flux per lattice cell but also the amount of disorder
in the system.

All the proposals discussed here claim that the relevant
model parameters are more or less within reach of present-
day experimental techniques. Given these latest ideas, one can
certainly hope for exciting experimental developments in the
near future!

8. Multicomponent Bose condensates

So far we have restricted ourselves to single-component
condensates of spinless (or scalar) bosons. The quantum Hall
phenomenology we have discussed is thus analogous to the
QHE of ’spinless’ (fully polarized) electrons, i.e. the case
where the effective Zeeman gap is sufficiently large that the

spin degree of freedom of the electrons is frozen out. Let us end
with a brief discussion of the more general case where internal
degrees of freedom, such as spin, play a role.

Polarization effects have been studied in the quantum
Hall literature, and in particular it has been shown that under
certain conditions the lowest energy charged excitation at
ν = 1 is a spin-textured object, a so-called skyrmion [85].
Moreover, there have been studies of spin polarization
effects at the edge of a quantum Hall system, predicting
the existence of spin-textured states for sufficiently smooth
confining potentials [86, 87]. In the context of atomic
Bose condensates, there are several ways of creating systems
with internal degrees of freedom, promising an even richer
phenomenology than in the quantum Hall system. One
interesting approach to producing multicomponent Bose
condensates is the simultaneous condensation of mixtures of
different atomic isotopes such as 85Rb and 87Rb [88, 89].
Moreover, it is possible to create spinor condensates by
trapping higher-spin atoms such as 87Rb [90] or 23Na [91, 92]
in optical traps [93]. The advantage of this technique is that
optical traps confine the atoms independently of their spin
orientations—as opposed to traditional magnetic traps, which
typically confine only one spin projection, effectively giving
scalar condensates [90, 91].

Inspired by these experimental advances, Reijnders et al
[10] have performed theoretical studies of rotating spin
1 condensates in the lowest-Landau-level approximation,
predicting a rich phase diagram and a number of exotic
states. In particular, in the quantum Hall regime, they
predict several series of novel non-Abelian states which are
generalizations of the Read–Rezayi states discussed in the
previous subsection. One might expect that future studies
will continue to reveal interesting new physics in high-rotation
states of multicomponent Bose condensates.

9. Concluding remarks

A summary of the research on quantum Hall physics in rotating
atomic gases is necessarily preliminary, as the field is still
highly active. At the present stage it is probably fair to
say that the theoretical side is well explored—there are many
direct analogies to the conventional quantum Hall effect, but
also physical differences, such as the expected occurrence of
non-Abelian states in the lowest Landau level. The desirable
next step would be for experiments to ‘catch up’ and reach
the quantum Hall regime. There is reason to be optimistic:
the experimental development has been rapid since the first
theoretical prediction of a quantum Hall effect in rotating
BEC and the first experimental creation of a quantized vortex
in the late nineties. The race towards the first experimental
realization of the bosonic quantum Hall regime is going on
at the time of writing, hand in hand with new theoretical
proposals for how to best design such an experiment.

One can only speculate about future developments. Given
the large degree of controllability of various parameters in cold
atom experiments, one may dream of the possibility to create
and manipulate anyonic quasiparticles and directly measure
their fractional statistics, Abelian or non-Abelian. This, in
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turn, might be the first step towards implementing a topological
quantum computer. But this certainly can not be expected to
happen in the near future.
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